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Fractals, Clusters, and Order-Statistics: A New 
Relation Between Probability and Entropy 
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The relationship between fractals and clusters and order-statistics is developed. 
The initial distributions for order-statistics coincide with homogeneous power 
laws, used in fractal geometry and clustering to generate self-similar objects, The 
entropy reduction is defined in terms of the number of particles or events from 
the top or the bottom of the ordered set. Expressions for the joint and conditional 
distributions of order-statistics are given in terms of the entropy differences of 
the interval. Statistical equivalence principles are given in which the probability 
of the entropy reduction being less (or greater) than the index of the order-statistic 
is the same as the probability of that order-statistic being greater (or less) than 
a given value. 

I .  P O W E R  L A W S  

H o m o g e n e o u s  p o w e r  laws  have  been used to relate " rank"  to frequency,  

or  probabi l i ty  (Zipf,  1949), and the vo lume  o f  a hypersphere ,  or  probabi l i ty ,  

to some  power  o f  the radius  o f  the vo lume (Khinchin ,  1949). Examples  o f  

the fo rmer  are the Pare to  law o f  incomes  and the Z i p f  law re la t ing f requency  
to word  ranks,  whi le  those o f  the lat ter  are the mass - to - rad ius  relat ion and 

the vo lume  o f  phase  space  as a funct ion o f  the energy.  The  former  and lat ter  

are inve r se -power  and p o w e r  re la t ions,  respect ively.  The  exponen t  may  be 

nonintegral ,  leading in the fo rmer  case  to the quest ion o f  how we are to 

measure  distance.  
Regard ing  inve r se -power  laws,  i f  L were  a smooth  curve,  it could  be 

de t e rmined  in the l imit  where  the number  o f  s teps N(I) tends to infinity whi le  
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the size of  the individual steps I tends to zero such that their product 

lim N ( l ) l  = L 
I--~0 

is finite. However, for real-life curves, which are often continuous but not 
differentiable, L does not exist. This motivated Mandelbrot (1982) to define 
the fractal dimension. 

As concerns power laws, the probability is measured in terms of  the 
volume of  phase space that is occupied by the system. Instead of  the number, 
or probability, decreasing as some inverse power, it now increases as a fixed 
power. The fact the fixed power turns out to be nonintegral, as in cosmological 
clustering of galaxies (Lavenda, 1995), motivates the definition of the cluster 
dimension (Hastings and Sugihara, 1993). 

But, surely, in order to provide a valid description, these power laws 
cannot be valid everywhere. Inverse-power laws, like the Pareto law, describe 
events above a given value, such as those of  incomes, while power laws 
themselves must have some upper limit to them, as in the case of the microca- 
nonical ensemble in statistical mechanics, where the total energy of the system 
is held constant. 

The fractal and cluster nature of  these cutoffs is evident, as in the case 
of trees whose smallest branches have a certain diameter. On smaller scales 
the fractai properties that are seen on larger scales are lost. Alternatively, 
when trees are viewed at sufficient distances, the individual nature is lost 
and the entire collection blends into a forest, whose cluster properties do not 
mimic those of  individual trees. 

However, on a scale where self-similarity applies it has been well known 
since the time of  Leonardo da Vinci that the combined cross-sectional areas 
of two main branches must be equal to that of  the trunk. If d~ and d2 are the 
diameters of the branches and d is the diameter of the trunk, then Leonardo's 
claim was d 2 = d 2 + d~. The same relationship holds for the standard 
deviation of the normal distribution, tr = (trl + cry) -. However, for extreme- 
value distributions, the standard deviation does not exist and we must replace 
it by a scale factor a = (al a + a2a) I/A (De Finetti, 1970). Such a generalized 
relation has been proposed by Mandelbrot (1982), who called A the diameter 
exponent. And if generalized botanical trees have anything to do with extreme- 
value distributions, the range of permitted values of A is (0, 2], where A = 
2 corresponds to the normal distribution. 

These same power laws appear as initial, or sample, distributions in 
extreme-value theory (Gumbel, 1954, 1958). Since there are only three types 
of asymptotic distributions, this may provide some restrictions on the other- 
wise seeming arbitrariness of the power law distributions. 
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There is the interesting question of what is the relationship between 
fractal and clustering phenomena and order-statistics and extreme-value distri- 
butions? In thermodynamics we know how to define entropy in terms of a 
pseudoprobability. 2 In the case of the microcanonical ensemble, entropy is 
defined as the logarithm of the "thermodynamic probability," or the volume 
of phase space occupied by the system. However, this is an asymptotic relation 
in the sense that the population, or the number of degrees of freedom, has 
been allowed to increase without limit. It is in this context that Boltzmann's 
principle is valid [see equations (24) and (25) below]. Can entropy be deter- 
mined without going to the "thermodynamic" limit? And if so, how is entropy 
related to the initial probability distributions, which turn out to be fractal and 
cluster power laws? The aim of this paper is to provide the answers to 
these questions. 

2. FRACTALS AND CLUSTERS: THINNING OUT AND 
F I L L I N G  IN 

The definition of dimensions for nonintegral objects has been widely 
publicized by Mandelbrot (1982). Although it is not often made clear, there 
are at least two types of objects that possess nonintegral dimensions. Well- 
known examples are the Kor~ak and cluster exponents. In 1938 Kor~ak 
studied the distribution of  sizes of islands in the Aegean sea. Let Nr(A > a) 
be the number of islands greater than an area a. Kor~ak found that this 
number satisfies the scale-invariant relation 

Nr(A > a) = const × a -B (1) 

Mandelbrot (1982) drew attention to the fact that this power law is 
analogous to the definition of the Hausdorff dimension ~ of a subset X of 
Euclidean space as 

= lira log N(r) (2) 
r-~0 log(l/r) 

where N(r) represents the smallest number of open balls of radius r needed 
to cover X. In the Kra~ak formula (1), this minimal number is assumed to 
be analogous to Nr(A :> a), or the number of islands having an area greater 
than a. The Kor~ak exponent can thus be defined rigorously as the limit 

B = lira log Nr(A > a) (3) 
,,-~0 log(1/a) 

2This may appear to make arbitrary the definition of the entropy in terms of a statistical 
quantity. Actually, the definition is fixed by the fact that the probability density can be expressed 
in terms of Gauss' law of error whose potential is precisely the entropy (Lavenda, 1991). 
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which also has an intuitive appeal, and to which we will refer as the frac- 
tal exponent. 

If n represents the total number of  islands whose areas are governed by 
the probability distribution F(a), then 

N r ( A > a ) = n P r ( A > a ) = n { l -  F(a)} = n(-~)  ° (4) 

where a0 represents some lower cutoff on the area of the islands for which 
the power law (1) is valid. According to this relation between the number 
of islands having an area greater than a and the tail of  the probability 
distribution, the power law (1) will be appreciated as the Pareto distribution. 
The Pareto tail distribution is the initial distribution which is in the domain 
of attraction of the Fr6chet distribution for the largest value (Gumbel, 
1954, 1958). 

For clustering phenomena we want to know the number of particles, 
say, within a given distance Nr(R -- r) from a centrally located one. If  this 
number of particles scales as 

Nr(R <-- r) = const x r ° (5) 

then the cluster is said to have dimension D (Hastings and Sugihara, 1993). 
Hence, we can define rigorously the cluster exponent as the limit 

D = lira log Nr(R --< r) (6) 
r ~  log r 

in analogy with the fractal exponent (3). If n represents the total number of 
objects, then the number of objects within a radius r of  the origin is 

Nr(R --- r) = n Pr(R --< r) = nF(r) = n ( ~ t  '" (7) 
\r0/ 

where ro is some upper cutoff, which may be the radius of  the entire volume 
under consideration. In this light it will be appreciated that (7) is the initial 
distribution which is the domain of attraction of  the Weibull distribution for 
the smallest value (Gumbel, 1954, 1958). 

Since there are only three stable distributions for the largest values, one 
of which we can rule out since it corresponds to a negative variate, there 
remains one other stable distribution that has not been exploited thus far. 
This is the double-exponential, or Gumbel, distribution (Gumbel, 1954, 1958), 
whose initial tail distribution is the exponential function. However, the defini- 
tion of the number of events exceedings v as 
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Nr(V > v) = n exp(-c~v) (8) 

where (x is known as the hazard rate. is not scale-invariant in the sense that 

f (x)  = nf(a,,x) (9) 

where the parameter a,, depends on n. In other words, a graph which appears 
the same on all scales must be of the form x c, where a,, = n-  L/c is the scale 
factor. Surprisingly enough, this is also the condition for stabili~ of the so- 
called second and third asymptotic distributions (Gumbel, 1954, 1958). 

The stabili~ postulate asserts that if the distribution of an extreme is 
equal to the probability distribution except for a linear transform of the 
variate, then the initial distribution is said to be stable with respect to this 
extreme (Gumbel, 1954, 1958). Since a linear transform does not change the 
form of the distribution, the probability that the largest value of the variate 
is smaller than or equal to x must be equal to the probability distribution of 
a linear function of x, namely 

F"(x) = F(a,,x - b,,) (10) 

where a, and b,, are referred to as the scaling and centering constants, respec- 
tively. The second and third asymptotic distributions of the largest values, 
where x < 0 for the third distribution, are derived from the stability postulate 
(10) by setting b,, = 0. Upon taking the logarithms of both sides of (10), it 
is not difficult to recognize that this is the same as the criterion of scale 
invariance (9) (De Finetti, 1970). Invoking the symmetry, principle, whereby 
the probability distribution for the smallest value is obtained from that of 
the largest value by changing the sign of the variate, what pertains to the 
third asymptotic distribution for largest value is also valid for the distribution 
of the smallest value, known as the Weibull distribution. In other words, the 
definitions of  the fractal and chtster exponents (3) and (6) are none other 
than the conditions for the existence of the Frdchet and Weibull distributions, 
which are extreme distributions for the largest and smallest values, 
respectively. 

As we have mentioned, the only remaining extreme-value distribution, 
the double-exponential or the Gumbel distribution, does not conform to the 
same type of scale-invariant criterion (9). Rather, the stability postulate 
requires a scaling parameter a, = 1. This has the effect of shifting the initial 
probability distribution to the right by an amount 

b,, = or-i log n ( 11 ) 

where a-~ is the scale parameter in the exponential distribution [see equation 
(8)] without a change of shape. Since (11) does not concern scale invariance, 
we will limit our discussion to the asymptotic stable distributions associated 



1998 Lavenda 

with exponents (3) and (6). In other words, these scale-invariant conditions 
coincide with the stability postulate for the Fr6chet distribution for the largest 
value and the Weibull distribution for the smallest value. They involve the 
shape parameters, or the exponents, B and D, whereas (11) involves the 
centering parameter with constant scaling, a - j .  

3. O R D E R - S T A T I S T I C S  

We now investigate the relationship between fractals, clusters, and order- 
statistics. Apart from its own interest, this will also provide a justification 
for the proposed relation between the probability of falling within a given 
interval and the entropy difference of  the endpoints of  the interval. 

If  we take a sample of  independent and identically distributed random 
values yl, Y2 . . . . .  Yk and order them such that y~) <-- Y(2) " '"  <- Y(k), the 
property of  statistical independence and the fact that they share a common 
sample distribution will no longer apply. Nevertheless, some simple and 
remarkable results can be obtained concerning their sampling, joint, and 
conditional distributions (Kendall and Stuart, 1969). 

The probability distribution for the rth order-statistic Y(r) can be obtained 
by supposing that the population of  size n has a continuous distribution 
function F(y) with a density F'(y) = f (y) ,  the prime being used to denote 
the derivative. Let y denote the rth value from the bottom. The probability 
of Y(r) is derived by considering each of  the n independent measurements as 
a Bernoulli trial, either success or failure. A "success" means Y~ -< y, while 
a "failure" occurs when Y~ > y. Thus, the probability that r - 1 of  the Y, are 
less than y while n - r are greater than y with the remaining value falling 
between y and y + dy is 

gr(y) dy = n! [F(Y)]~-' [I - F(y)]"-r f (y)  dy (12) 
( r -  1)! (n - r)! 

This is a beta distribution in F and the factorials can be combined into the 
Beta function, 

B(r, n - j  + 1) = F(r)F(n - r + 1)/F(n + 1) 

If  x denotes the rth value from the top, the beta distribution is 

[F(x)]"- ~[ 1 - F(x)] ~- IdF(x) 
dGr(F(x) ) = (13) 

B(r,n - r + 1) 

The beta distributions are special cases of  the multinomial distribution 
in which n elements are taken at random and we want to determine into 
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which of the k intervals they be long)  On the assumptions of  independence 
and replacement, the number of  elements in each interval is a multinomial 
random variable [Castillo (1988), equation (2.11)], and, consequently, the 
joint probability distribution (12) from the bottom for k intervals is given by 

grl,....rk(Yt, Y2 . . . . .  y~) dyl @2 "'" dyk 

k [F(yi) _ F(yi_l)]ri-r i- l - t  
= n! ~I f (Y i )  dyi (14) 

i=1 (r i - ri_ I - 1)! 

withy~ --< Y2 " "  -< Yx- The fact that the distribution function F(y)  is completely 
monotone ensures that the probability distribution (14) will be positive defi- 
nite. The property of being completely monotone will soon be transferred to 
the entropy through a new relation between probability and entropy reduction 
[equations (16) and (17) below]. 

As a particular case of  (14), consider the joint distribution of any two 
order-statistics Y(r) and Yis) from the bottom with r < s. This is given by 

gr..~(Yi, Y2) dyl @2 

[F(yt)] r-R [F(y2) - F(yl)] ~-~-I [l -- F(y2)] "-~ 
= n !  

(r - 1)! (s - r - 1)! (n - s)! 

× f(Y~)f (Y2)  dyl dy2 (15) 

where Yz >- Yl, so that (15) is always positive, as it must be. When the joint 
probability distribution for order-statistics from the top is considered, all that 
is needed is to interchange the distribution function F(y)  with the tail 1 

- F(x) and the tail 1 - F(y)  with the distribution function F(x) at the 
terminal states. 

We now focus our attention on the asymptotic behaviour of  these proba- 
bility distributions when the sample size is allowed to increase without limit. 
To this end, it is convenient to introduce the entropy reduction AS (Lavenda 
and Florio, 1992), whose magnitude represents the number of  particles, events, 
or elements < y, namely 

hE(y)  = - A S ( y ) : =  So - S(y)  (16) 

where So is the value of  the entropy in the lower terminal state F(yo) = O. 
Alternatively, if x denotes the rth value from the top, we would have to 
replace (16) by 

n{l - F(x)} = - A S ( x )  :=  S~ - S(x) (17) 

3One usually considers the multinomial distribution as a generalization of the binomial distribu- 
tion. The essential distinction between the binomial and beta distributions is that in the former 
the number of balls in urns of fixed size is considered, whereas in the latter the number of 
balls is fixed and the urns are allowed to vary in size. In essence, there is statistical equivalence 
between the two and this will be discussed in the last section. 
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where 5'= is the value of  the entropy at the upper terminal state, F(x=) = 1. 
From these expressions we are to conclude that the entropies of the extremes 
are always the largest, and implicit in both (16) and (17) is the assumption 
that IAS(x) l < n. 

Gumbel (1954, 1958) defines the expected largest value X~up as the 
solution to 

t7{ 1 - F(x~up)} = I (18) 

This is the value of the variate that has expectation of being exceeded only 
once in a sample of size n. To see what this means in terms of the entropy 
reduction (16), we reinstate Boltzmann's constant k and write condition (18) 
as AS(x~up) = - k .  This is the largest reduction in entropy that is possible. 
The entropy of  the largest characteristic value is the closest to the maximum 
entropy at the extreme. The entropy reduction of  the characteristic ruth extreme 
value, x,, with m <- n, AS(x,,) = - m k ,  will always be smaller than the entropy 
reduction of the largest characteristic value. In other words, the entropy is a 
monotonically increasing function for order-statistics at the upper extreme. 

Analogously Gumbel (1954, 1958) defines the smallest characteristic 
value Yinf by the condition 

nF(yi,f) = 1 (19) 

Comparing this with the mth smallest characteristic value in terms of their 
entropies, we find S(Yint) ~> S(ym), but now since y~,f < Ym, the entropy is a 
monotonically decreasing function of  its argument. 

Inserting (16) into (12), and considering n large enough so that Stirling's 
approximation can be applied in the form n! ~ n"e-", we can express the 
probability density of the order-statistic Ytr) 

g~(S(y)) = 
[So - S(y)] ~-t [1 + (So - S(y))/n] "-~ 

( r -  1)! (1 - r/n)'-re ~ 

in terms of the entropy reduction from its maximum value at the bottom So. 
Now letting n --~ ~ results in 

[So - S ( y ) ]  r -  J 
gr(S(y)) dS(y) = e s~y)-s° dS(y) (20) 

( r -  1)! 

which is easily recognized as the gamma density (Cramrr, 1946). In the case 
r = 1, (20) becomes the asymptotic distribution for the smallest value. 

The same gamma distribution is obtained for the rth value from the 
top, namely 
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[S= - S(x)] r-I 
gr(S(x))  dS (x )  = eS~x)-s= dS(x )  (21 ) 

( r -  1)! 

When we consider the joint distribution of the rth value of x from the top 
and the rth value of y from the bottom, then, in the limit as n ---> ~, we find 
that the joint distribution factors into a product of the two gamma densities 
(20) and (21) (Cram6r, 1946) [cf. (29) below]. This bears witness to the fact 
that the statistics from either extreme is independent of the other provided 
the sample size is sufficiently large to warrant Stirling's approximation. This 
also happens to be the same condition for the validity of thermodynamics 
(Lavenda, 1991). 

The relation between the entropy reduction and the probability distribu- 
tion (16) can be used to cast the joint distribution (14) into the suggestive form 

grl.rz_.....,'k(YJ" YZ . . . . .  Yk) dyl  dyz "'" dyk 

= [ - A S ( y O ]  "j-I 
S ' ( y O  dyl  

( r t -  1)! 

k-I [S(yi) - S(yi+l)] ri+l-ri-I 
X H S'(Yi+l) dYi+le as~yk) (22) 

i=! (ri+ l -- r i -- 1)! 

where we have used the relation F(yi )  - F(y i_ l )  = [S (y i - i )  - S(yi)]/n, r~+l 
= n + 1, and the fact that the population is large enough so that Stirling's 
approximation applies. Likewise, by introducing (17) into (13), we obtain 
the joint distribution for a population of size n in k intervals from the top as 

g~l.~.....rk(Xl, X2 . . . . .  Xk) dxl dx2 "'" dx~ 

= eaS¢~nS'(x!) dxl 

k- I [S(xi+ l) - S(xi)] "i+ t - , i-  1 [ _ AS(xk)]~k- 1 
X ~[ S'(xi+O dxi+t (23) 

i=l (ri+ I - - r  i -- 1)[ ( r k -  I)! 

where the difference in the distributions functions is now F(xi+t) - F(xi) = 
[S(xi+O - S(xi)]/n, rl = n + 1, and we have considered n large enough to 
apply Stirling's approximation. For k = 1, (22) and (23) reduce to the gamma 
distributions (20) and (21), respectively. For r = 1 they become the asymptotic 
distributions for the smal les t  and largest  values, respectively. 

E x p r e s s e d  in words, (22)  and  (23)  relate the probabi l i ty  that an e l e m e n t  
will  be f o u n d  in a g iven in terval  to the d i f ference  hz en t ropy  o f  the in terwd.  
The larger the difference in the entropies of the endpoints of the interval, 
the greater is the probability that an event will occur in that interval. The 
presence of the exponential factors is merely a statement of the conservation 
of probability in the large-population limit. Moreover, (22) shows that the 
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entropy is a monotonically decreasing function from the bottom, while (23) 
shows it is monotonically increasing for order-statistics from the top. These 
properties of the entropy in the two extremes will be of  aid in determining 
the characteristic forms of the entropy reduction for smallest and largest 
values in the next section. 

In both extremes Boltzmann's principle is asymptotically satisfied in a 
way in which Boltzmann himself would not have appreciated. Instead of a 
thermodynamic probability, which is a large number represented by a binomial 
or multinomial coefficient, what we can refer to as Boltzmann's principles 
apply to the probability distribution, or its tail, depending upon whether 
we are considering the smallest or largest values, respectively. Boltzmann's 
principle is either given by 

n[1 - F(a,,x)] = -AS(anX) --~ - t o g  Pr(a~-lX~n~ --< x) (24) 

o r  

nF(any) = -AS(any)  --~ - l o g  Pr(a~-WYci) > y) (25) 

depending upon whether we are considering the largest and smallest values, 
respectively, in the asymptotic limit as n --~ ~ with x and y fixed. The 
asymptotic nature of this result will be readily apparent when we consider 
the conditional probability distribution (27) below. A comparison of the 
reference states will show that it is as if the information of the initial state 
has "worn off" and the system has "forgotten" which state it originated in. 
Moreover, the entropies of the extremes are always greater than any intermedi- 
ary value of the entropy, and the extremes are statistically independent in 
the asymptotic limit as n --~ oo [equation (29) below]. 

Let us now consider the conditional probability distributions that can 
be constructed from the ratio of the joint probabilities (22) and (23) and 
the "single gate" probability distributions (20) and (21), respectively. The 
probability density of the order-statistic Ytr) given Yc~) from the bottom with 
r < s i s  

gr.s(YJ, Y2) dyl dy2 
g~.~-~(Yl ly2) dyl = 

g.~(Yz) dyz 

p(yl)~-~[l - p(yt)].~-r-l 
= dp(yt) (26) 

B(r, s - r) 

which is again a beta distribution, except that now the variate is p(y~) = 
AS(yO/AS(y2) < 1. Again this shows that the entropy of order-statistics from 
the bottom is a monotonically decreasing function. 

The conditional probability distribution of the order-statistic X(r~ given 
Xc., ) from the top with r < s is 
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g~.s(xl, x2) dxl dx2 
g,-r(xl Ixz) dxl = 

g~(x2) dx2 

[S(xz)  - S ( x O ]  

(s - r -  1)! 
eSm)-s~x2~S'(:rt) dxl (27) 

It is quite remarkable that conditional probability density (27) has the same 
form as the probability density (21), with the exception that the reference 
state is not the state of maximum entropy, but rather the entropy of that state 
which conditions the distribution. 

Finally, we consider the joint probability distribution of the rth value 
o fx  from the top and the sth value o fy  from the bottom with x > y. Following 
the same line of reasoning as before we obtain the expression (Cramrr, 1946) 

gr.~(x, y) d,; dy 

[1 - F(x)] r-I [F(y)] s-' [F(x) - F(y)]"-r-Sf(x)f(y ) 
dx ay (28) 

(r - 1)! (s -- 1)! (n - r - s)! 

for the joint probability distribution. In terms of the entropy reductions (16) 
and (17), the joint probability distribution (28) is 

gr,,(x, y) dx dy 

[_  AS(x)Ir- I [_  AS(y)lS- I 

( r -  1)! ( s -  1)! 

[1 + AS(x)/n + AS(y)/nl "-~-s 
× S'(x)S'(y) dx dy 

[1 - (r + s)/n]n-r-se r+s 

for a sufficiently large population. The additivity of the entropies in the last 
expression is indicative of a lack of correlation between the order-statistics 
at the two extremes. This becomes apparent in the asymptotic limit as n --~ 
~, for in this limit the joint probability distribution reduces to a product of 
gamma distributions (Cramrr, 1946), 

gr, s(x, y) dx dy 

[S~e - -  S ( x ) ]  r -  I 
= eSm-S~S'(x) dx 

( r -  1)! 

[So - S(y)] ~- 
X eS~y)-S°S'(y) dy (29) 

( s -  1)! 

This implies that order-statistics from the top and bottom are statistically 
independent in the asymptotic limit of a large population. 
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The statistical independence of the statistics at the extremes is indeed 
welcome; for although there exist theoretically continuous frequency distribu- 
tions uniting upper and lower limits of the order-statistics, very few are 
known in analytical form. Consequently, we should not expect there to be a 
single expression for the entropy which is valid at both extremes simultane- 
ously. Rather, we should expect to find asy,nptotic expressions for the entropy 
in the extremes that are related to the asymptotic extreme-value distributions 
through the Boltzmann principles (25) and (24), involving the initial distribu- 
tion and its tail, respectively. 

In order to derive the expressions for the entropies in the extremes we 
use the fact that any putative expression for the entropy must be a concave 
function (Lavenda, 1991), and the conditions imposed on the entropies in 
the joint probability distributions (22) and (23). The remarkable fact that 
there are only three classes of asymptotic extreme distributions for the largest 
value, and the corresponding three classes for the smallest value, together 
with the property of scale invariance will select two asymptotic expressions 
for entropy, one for the largest value and the other for the smallest value. 

4. GEOMETRY, PROBABILITY, AND ENTROPY 

We have seen that order-statistics requires the entropy to be a completely 
monotone function, increasing for order-statistics from the top and decreasing 
for order-statistics from the bottom, and because the extremes are independent 
there will be two asymptotic forms for the entropy for the largest and smallest 
values. This property of the entropy follows from the fact that the distribution 
function or its Laplace transform is completely monotone (Feller, 1971) [cf. 
equations (24) and (25)]. 

For the distribution of the smallest value, the entropy must be monotoni- 
cally decreasing and scale invariance implies that it varies as a fixed power 
of the positive variate y, 

D 

where Y0 is the range of y, and the positive exponent D is known as the Weibull 
modulus. The monomial form of the entropy reduction (30) is corroborated by 
the fact that P(Yl) = AS(yl ) IAS(y2)  = (Yl/Y2) D < 1, where Y2 ~ Y~ in the 
conditional probability distribution (26). We can thus identify the magnitude 
of the entropy reduction in (30) with the number of particles, say, within a 
distance y, according to the scaling law (7). 

In other words, the number of particles less than or equal to y is given 
by the reduction in entropy 
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Nr(Y~ -< y) = So - S(y)  (31) 

Introducing (31) into (30) and taking logarithms yields 

,og o ,o ( 01 (32) 

The parameter n determines the characteristic distance yon-~/D which makes 
Nr(Y,. --< y) = 1. It will be readily appreciated that this value coincides with 
the smallest characteristic value Yinr in (19). The scaling parameter is a,, = 
n-~/D and tends to zero as n ~ ~. In terms of the nearest neighbor model, 
this is the smallest distance at which one particle will be found to a given 
particle [see equation (52) below and accompanying discussion]. In other 
words ny~ D can be thought of as a cluster density having dimensions of 
(length) -°.  

In the case of the order-statistics from the top, the joint probability 
distribution (23) requires the entropy to be a monotonically increasing func- 
tion. This, together with the fact that it must be scale invariant, leads to the 
identification of the (inverted) gamma density (21) (as a function of x) in 
the extreme r = 1 with the Fr4chet density for the largest value. Hence the 
entropy reduction is 

B 

where the parameter x0 represents the lower cutoff on x, like the smallest 
income for which the Pareto distribution is valid. 

According to the scaling relation (4), the number of objects greater than 
x is given by the following expression for the entropy reduction: 

Nr(X/> x) = S~ - S(x) (34) 

Now introducing (34) into (33) and taking logarithms leads to 

l o g N r ( X i > x ) = l o g n - B l o g ( ~ )  (35) 

The parameter n now determines the largest characteristic distance :Co n~m if 
x represents a distance. Consequently, the scaling is a,, = n 3/B and goes to 
infinity as n does. And just as nyff ° represents a cluster density, nx~0 represents 

f ractal  ratiO., sponginess or hollowness, with units (length) B. Formulas (32) 
and (35)--and not the expressions for the characteristic exponents (3) and 
(6)--are what characterize clusters and fractals, respectively. 

As an illustration of how the transition from probability to physics can 
be accomplished, the tail, or the probability, can be set equal to the ratio of 



2006 Lavenda 

the pressure P to the pressure of an ideal gas Pmat = rtZ]V occupying a 
volume V. In the former case, 

P(r) 
1 - F ( r )  - (36) 

Pmat(r) 

which cannot be greater than unity without jeopardizing the stability of  the 
system. For instance, if we are discussing stellar stability, P would be identi- 
fied with the radiation pressure. It is then easy to see that (36) is a proper 
fraction; the radiation pressure is one-third of the energy density. With P(r) 
as the radiation pressure, (36) becomes 

1 - F ( r ) - -  hcc n (37) 

where r 3 is proportional to the volume of a star containing n particles of 
mass m = txn, tx being the mass of  a proton. 4 The right-hand side of  (37) 
is the cube of the ratio of  the wavelength per particle, rln t~3, to the thermal 
wavelength, ~v = hc/T. In regard to the fact that the star cannot be radiation- 
dominated, or that (36) must be a proper fraction, the thermal wavelength 
of  radiation hv is an upper limit on the linear dimension accessible to a particle. 

The ratio (36) can be turned into a stability criterion by considering the 
condition of thermal equilibrium, 

T Gmlx (38) 
r 

in the presence of gravitational attraction, where G is the Newtonian gravita- 
tional constant. Expression (38) is the nonrelativistic, nondegenerate virial 
theorem, which equates the gravitational energy per particle to the thermal 
energy. Introducing (38) into (37) results in 

1 - F ( r ) - -  ~ ,  (39) 

where n ,  = (hc/GIx2) 3/2 = a~ 3~2 is the maximum number of  protons that a 
star can contain without jeopardizing its stability. This is known as the 
Chandrasekhar limit, and the corresponding mass is the Chandrasekhar mass. 

Therefore, the entropy reduction corresponding to the tail distribution 
(39) is 

4In classical thermodynamics of degenerate gases, n[l - F(r)] would either be identified with 
the entropy or the particle number. 
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AS(n) ~ - n (40) 

Introducing the scaling relation 

n(r) ~ no r°  (41) 

where no is space independent, gives the thermodynamic force upon 
differentiation, 

-j  

 - (n°Yoor3° ' ,42  
T \ n . ]  

Finally, introducing the equilibrium temperature (38) gives the gravitational 
force as 

d ~  ( no l? Gm 2 
dr \ n , ]  r 2 (43) 

which upon integration gives 

• /'(r) ~ Gm2 
r 

(44) 

~ l / ' ( r )  
AS(r) = - - -  ( 4 5 )  

T(r) 

where ~W(r) is the work necessary to accomplish the change and AS(r) is the 
total entropy reduction of the n particles. The relation (45) is reminiscent of 
the principle of minimum work proposed by Landau and Lifshitz (1938) in 
conjunction with a generalization of the usual Gibbs relation. We emphasize 
that there is no Gibbs relation which is valid for inhomogeneous systems 
and that the minimum work is a function of a sole independent coordinate, 

The force × is the derivative of the work (Landau and Lifshitz, 1938) done 
in bringing n particles from infinity to within a spherical volume of the star 
with radius r. Expression (46) brings out the degenerate nature of the star, 
in that it reduces the negative of the potential energy by a factor of (n/n,) 2, 
or increases the potential energy by the same factor. 

In fact these relations apply regardless of whether the scaling exponent 
D in (41) is positive or negative. In the case of white dwarfs, n ~ r -3 (Sexl 
and Sexl, 1979), while in the case of clustering, D is positive and less than 3. 

Consequently, the decrease in the entropy when some external source 
brings the system from a state of equilibrium to any given state is 



2008 Lavenda 

the radius of the sphere. Moreover, according to (36), we can express the 
work in (45) as 

~t/'(r) = P ( r ) V  (46) 

where V is the volume of  the system. For an ideal gas P V  = "qU, where rl 
= I/3 for a photon gas or r I = 2/3 for a material gas, and U is the internal 
energy. The entropy reduction is thus AS = - 'qn ;  the change in entropy is 
the largest possible and rt -< 1. As we have appreciated from (40), interactions 
among the particles can only lead to a decrease in the entropy reduction, i.e., 
it becomes more negative. 

5. STATISTICAL E Q U I V A L E N C E  P R I N C I P L E  

The formulas relating the number of particles less than or greater than 
a given value to the reduction in entropy, (31) and (34), respectively, can be 
used to formulate a statistical equivalence principle. Let us observe that the 
rth order-statistic Y~r~ <- Y iff there are r o r  m o r e  of  the Y~ that are less 
than or equal to y. Call this number N ( y ) ,  where we explicitly indicate the 
dependence on the value y. Consequently, 

Pr(N(y) -> r) = Pr(Y~r) -< y) (47) 

In Section 3 we showed that in the asymptotic limit of  an infinitely large 
population the cumulative distribution function of  Y~r~ is fN(v) t r - I  

Pr(YIrl ~ Y) = J0 " ~--r) e - ' d t  (48) 

In the same limit, the probability that there are r or more values of the Y~ 
less than or equal to y is 

Pr(N(y) ~ r) = ~ [N(y ) ] i  e -N(y) = 1 - [N(y ) ] i  e -N(y) (49) 
i! i! i=r i=0 

Introducing (48) and (49) into (47) give the analytical identity 5 

5 The asymptotic relation for n ~ oo can be derived from the equivalence between the cumulative 
distributions of  the binomial and the beta 

I; 
k pk(i - p ) ' - k  = °  B( r ,n  - r +  1) 

In the limits that n ---> ~ and p --> 0, such that the product np is moderate, the left side 
transforms into the tail o f  the Poisson distribution, while the right side becomes an incomplete 
g a m m a  function. 
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r -  ! (N(v) 
Pr(N(y) > r) = 1 - j=o ~ [N(Y)]Jj ! e-N(") = |Jo - -  

t r - I  

( r -  1)! 
e-tdt 

which can easily be verified by integrating by parts. The last integral is simply 

fo~ 
' [ N ( t t ) ] r - 1  

Pr(Y~) < y) = ~--~ ~ e-N(")N'(u) du 

Now according to (31), N(y) is the number of the Y,. less than or equal to y 
which coincides with the entropy reduction So - S(y) from the bottom. 
Hence, the statistical equivalence principle (47) can be expressed as 

Pr(S0 - S(y) -> r) = Pr(Y(r) -< y) (50) 

Analogously, in order for S(r  ) ~ X there cannot be more than r of the 
X; that are less than or equal to x. The statistical equivalence principle is 
now given by 

[N(x)~- I i = t ~-I 
j=0 ~.I e-N('r) = N(x) ~ e-'dt 

or equivalently in terms of the entropy reduction from the top (34) as 

Pr(S= - S(x) --< r) = Pr(X~) -> x) (51) 

The statistical equivalence principles (50) and (51 ) assert that the specification 
of intervals for a fixed number of events, and the number of events occurring 
in fixed intervals, are statistically equivalent. 

The entropy of a classical perfect gas is of the form - n  log n, while 
for an ideal degenerate gas it varies as n itself (Lavenda, 1995). For inhomoge- 
neous systems like fractals and clusters, the magnitude of the entropy reduction 
also varies as n. This number can also increase or decrease with the indepen- 
dent variable according to expressions (30) and (33), respectively. 

Let Y denote the distance between a particle placed at the origin and 
the nearest neighbor. The probability g(y) dy that the nearest neighbor occurs 
between y and y + dy is the product of the probability that no particle occurs 
within a distance y and the probability D3~9-~/y~o dy that a particle exists 
between y and y + dy in an arbitrary space of dimension D, where Yo is 
the radius of the entire hypersphere. Consequently, g(y) must satisfy the 
functional relation 

g(y) = 1 - g(s) ds D Y ,  
_1 Yo 

(52) 
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The functional relation may be solved by first differentiating and then inte- 
grating with respect to y (Chandrasekhar, 1943). The result is 

D-I  
g(y) = D ~ e -~gy°)° (53) 

Y0 

which is the nearest neighbor probability density in a space of D dimensions. 
The nearest neighbor probability distribution is a special case of the Weibull 
distribution for the smallest value. It can be generalized to r nearest neighbors 
by simply employing the results of Section 3 for order-statistics (Lavenda, 
1995). 

The functional relation (52) reduces to 

yO-i 
g( y) --) D yO as y - -~0  

This is confirmed by the solution (53) we have found. In this limit we have 

( y ) 9  
Pr(Y-<y) = ~0 

which is the negative of the entropy reduction (30) for a single particle--the 
nearest neighbor. 

Now let g(x) dx denote the probability that the furthest neighbor to a 
particle occurs between x and x + dx. This is equal to the probability of 
there being no particles further than x + dx and the probability B 4 / x  8+ Idx 
that the furthest particle will be found between x and x + dx. By the conserva- 
tion of probability [ 1 - f'] g(s) ds] = f:~o g(s) ds, where the lower cutoff x0 
can be thought of as the radius of the excluded volume about the central 
particle, it follows that g(x) must satisfy the functional relation 

g(x) = g(s) ds xB + i (54) 
. 0  

Rearranging and differentiating (54) leads to 

d _ B 4  

84 J x 8+' B 4  

This can be integrated to give 

Bx ° e_l.,g~lB g(x) = ~ (55) 

which will be easily recognized as Fr6chet's probability density for the 
largest value. 
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On the strength of the conservation of probability, the functional relation 
(54) tends to 

g(x) ---> xe+---- S as x ---> 

This is substantiated by the solution we have found, (55), and for large x 

Pr(X > x) = ( ~ )  8 

which is equal to the negative of the entropy reduction (33) for a single 
particle--the furthest neighbor. 
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